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Abstract. The electronic structure and the infrared light absorption in p-doped twinning super-
lattices are calculated. The standard 6× 6 k · p Hamiltonian is employed, with the split-off band
taken into account. The effective scattering potential at the twinning interface is modelled by
appropriateδ-potentials. The calculation of the intersubband absorption is also performed. The
origin of each absorption peak is identified, and the polarization dependence is explained in terms
of the structural parameters. The magnitude of the absorption coefficient indicates considerable
benefits offered solely by the change of the atomic stacking sequence, i.e. the enhanced scattering
related to it. Good agreement between our results and those computed by the pseudopotential
theory is found.

1. Introduction

There has been growing interest in microstructures consisting of differently oriented semi-
conductors in recent years [1], a special class of these being twinning superlattices (TSLs) [2,3].
A single twinning boundary (STB) is a common defect in semiconductors, which detrimentally
affects electron transport in a device. However, if the twinning boundary is periodically
repeated, coherent scattering induces the continuum in both the valence and the conduction
band to split into a set of minibands. This means that electronic, transport, and optical properties
are all affected by twinning. The TSL is currently known to occur in some natural crystals [4],
amorphized Ge films [5], and artificially grown whiskers [6], and very recently a Si-based
TSL was successfully produced by boron-mediated epitaxial growth [7]. It should be stressed
that peculiarities of the electronic structure occur due to the rotation-induced change of Bloch
functions across the boundary. The electronic properties of a STB or TSL may be obtained by
microscopic methods—pseudopotential, tight binding and suchlike—because these recognize
the detailed atomic configuration and structure of the wave functions. It is less clear, however,
whether a simpler method like that of multiband effective-mass theory (EMT) [8] would be able
to handle these structures. Its ability to do so would be welcomed for at least two reasons. One
is that the computational complexity and related numerical problems in microscopic methods
are grossly reduced in EMT-based approaches. The second is that, while microscopic methods
may give reasonably accurate band structures in the∼10 eV range, it may be very difficult to
get them to accurately reproduce fine details of the band structure in a narrow range of energies
which may be of greatest interest for a particular problem. Indeed the commonly used sets of
pseudopotential or tight-binding parameters usually fail to deliver the bulk effective mass or
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Luttinger parameters with good accuracy. A closer look at electron scattering in a twinning
interface indicates two sources of this phenomenon: the fact that the two bulks are different
(in their crystallographic orientation), and the fact that the atomic stacking sequence in the
vicinity of the interface, and hence also the associated microscopic potential, are not bulk-like.
The EMT method, if comprehensive enough, may sense the crystal orientation, but it may
not be expected to account accurately, if at all, for the interface microscopic potential. This
latter should therefore be built in EMT as an effective interface potential which acts upon
envelope wave functions. The p-like hole states are far more affected by twinning than are
s-like conduction band states in a direct-gap semiconductor, and clearly only the former should
be explored in this respect.

In this paper an EMT-based model of the electronic structure and intersubband absorption
between the valence minibands in the TSL is devised. The model relies on the results of the
pseudopotential theory [3] in deriving some of its parameters (interface effective potentials,
which are modelled byδ-function potentials positioned at the interface, with different strengths
for the three hole branches). In order to obtain the exact potential, quite extensive density
functional theory [9] should in principle be employed, but the simple model used is found to be
quite acceptable. We allow that the in-plane inversion asymmetry of the TSL’s semiconductor
influences the two-dimensional electron gas (2DEG), and do not impose any additional
symmetry other than the host crystal’s own. Then we proceed to calculate the intersubband
optical absorption, via finding the interaction Hamiltonian, and transition matrix elements. The
dependence of the absorption on the light polarization is attributed to the specific configuration
of the transition matrix elements delivered by the interaction Hamiltonian in this system.
Certainly the theory devised for TSLs is also applicable for a single twinning boundary, as a
large-period limit of a TSL, and should enable one to study hole scattering, excitons, and other
phenomena thereby.

The paper is organized as follows. In section 2 the theory of the electronic structure is
presented and described in detail. The eigenfunctions from this part are then used in section 3
to calculate matrix elements and the absorption coefficient. The peculiarities of the miniband
structure and the dependence of the absorption on the light polarization and TSL parameters
are discussed in section 4.

2. Electronic structure

We start from the multiband EM Hamiltonian in the|J,mJ 〉 basis:

|3/2, 3/2〉, |3/2, 1/2〉, |3/2,−1/2〉, |3/2,−3/2〉, |1/2, 1/2〉, |1/2,−1/2〉

spanning heavy holes, light holes, and the split-off band, with the energy axis pointing down-
wards [10]:

H = h̄2

2m0
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(3)

Herekx , ky , andkz denote the hole wave-vector components in the coordinate system oriented
along the [11̄2], [1̄10], and [111] crystallographic directions [11], respectively,γ1, γ2, andγ3

are the Luttinger parameters,1 the spin–orbit splitting, andm0 the free-electron mass. In 2D
microstructures, the kinetic Hamiltonian given by equation (1) takes an operator form, with
kz →−i ∂/∂z for the superlattice oriented along [111], and is accompanied by a macroscopic
potential; these act together on the envelope function vectorF(z):

(H + V (z))F (z) = EF(z) (4)

where the energyE is measured from the valence band top downwards. The structure under
consideration comprises a sequence of oppositely oriented (mutually twisted byπ radians
about thez-axis) slabs havingl andm monolayers of a single semiconductor X (=GaAs,
Ge, Si). It may be conveniently denoted as XlX ′m, and is symbolically depicted in figure 1.
The Hamiltonian given by equation (1) is used for the material of (say) orientation↑, and
more precisely denoted asH↑, whereas an appropriate form should be constructed for the
(rotated) layer↓. Now, we first note that the transversal invariance is preserved in the layer
planes, so the transversal wave vectorkt = (kx, ky) is a good quantum number for the whole
structure and the wave functions should behave as exp(ikt · rt) in both layers. If one imagines
that a part of the crystal is rotated byπ radians about thez-axis, its Hamiltonian and a state
behaving as exp(ikt · rt) will be unchanged in its own, rotated coordinate system. However,
the wave-function matching should be performed in a common coordinate system. Hence, to
make the Hamiltonian analogous to (1) but for the rotated crystal, we first set the Hamiltonian

Figure 1. A schematic view of the twinning superlattice having two layers of equal widthd. Two
parts of the period are mutually twisted byπ radians, and there is aδ-potentialVi for each basis
state (i = HH, LH, SO). Layer↑ is considered as the normal with the Brillouin zonekx -, ky -, and
kz-axes directed along [112̄], [1̄10], and [111] crystallographic directions, respectively. The same
Hamiltonian applies to the rotated layer (↓), but in the coordinate system defined by unit vectors
oriented in the [̄11̄2̄], [11̄0], and [111] directions.
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for the normal crystal but withkt → −kt , and then rotate the crystal (which will restore the
exp(ikt · rt) behaviour in the unrotated coordinate system). However, rotation also affects the
basis functions withmJ = ±3/2,±1/2, so we also have to change to the ‘old’ basis set, as
defined for the unrotated crystal, by applying the rotation matrixR̃ which in this case reads

R̃ = diag(−i,+i,−i,+i,+i,−i). (5)

Therefore

H↓(kt) = R̃H↑(−kt)R̃
−1 (6)

is the appropriate Hamiltonian for the (rotated) layer↓ (note that thekz-component of the
wave vector is not changed by this rotation). In effect, the elements ofH↑, equation (1), which
change in this operation areB andC, i.e.

B↓ = −
√

2

3
(γ2 − γ3)k

2
+ −

2√
3
(2γ2 + γ3)k−kz

C↓ = −γ2 + 2γ3√
3

k2
− − 2

√
2

3
(γ2 − γ3)k+kz.

(7)

The 6× 6 Hamiltonian given by equation (1) suffers from relative complexity, which is
frequently alleviated by making additional assumptions about the symmetry of the electronic
structure, the most successful being the axial approximation. In essence it neglects the
effects of the corrugation of constant-energy lines in thekt-plane, and enables a rather
straightforward block diagonalization of the Hamiltonian, which halves the size of the problem.
In compositional superlattices the axial approximation is known to work best in the [111]
direction [11], which is encountered in TSLs. However, the crystal rotation is one of the major
effects bringing about miniband structure in TSLs; hence the axial approximation would here
be of doubtful validity, so it was not used in this work. Indeed, as we show below, introducing
the axial approximationa posteriorileads to considerable errors.

The empirical pseudopotential method (EPM) for a single twinning boundary indicates
the existence of hole bound states and resonances, localized at the interface [3]. These
originate from the feature that the microscopic potential in the vicinity of the interface is
essentially different from the potential in either rotated or unrotated bulk. Since the EPM,
like other microscopic methods, recognizes the microscopic structure, it is able to discover
such states. The EMT, however, should not be expected to do so, and indeed we have checked
that direct application ofH↑ andH↓ to a single twinning interface gives no bound states or
resonances. Since these states are generally important for electronic and optical properties,
the EMT Hamiltonian should be amended with an ‘effective’ interface potential.

Both the EPM and self-consistent pseudopotential calculations indicate that the non-bulk-
like perturbation of the microscopic potential at the interface has a very short range (∼one
lattice constant or so) [12]. Alternatively, in the atomic stacking sequence ABCABĈBACBA
one may recognize the B̂CB wurtzite slab ‘inserted’ in zinc-blende material, and recall that
band discontinuity appears at the zinc-blende/wurtzite interface, as discussed in more detail
in [13]. The sign of the discontinuity is indeed such that holes tend to be confined to the
wurtzite layer, i.e. the twinning boundary, though it is not clear whether the concept of band
discontinuity, and its value derived for the junction of two slabs, is quantitatively applicable
to a layer as thin as this. In any case, bound states are not found from the EMT Hamiltonian,
equation (4), withV (z) = 0. The simplest model potential for amending the EMT Hamiltonian
would be an attractive (negative-strength) Diracδ-function centred at the interface. A similar
idea was employed to describe0–X-valley mixing at interfaces [14]. Its strength should be
determined by comparison to EPM results. However, we find that a singleδ-potential cannot
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even approximately reproduce the EPM results. (Ge and Si have one HH and one LH bound
state, above the valence band top, while GaAs additionally has an SO-like resonance slightly
above the SO band top, weakly coupled to the valence band continuum via SO–LH mixing.)
This may be an indication that theδ-function should be replaced by a finite-range potential,
the shape of which is to be determined in the same way (though it could not be done uniquely,
then). We have chosen, instead, to keep the model potential as simple as possible, and have set
threeδ-function potentials at the interface with different strengths for the three hole branches,
determined so as to match the EPM-calculated state energies of the STB. The resulting strengths
are given in table 1. These are calculated from the EPM-predicted bound-state energies of the
single twinning boundary atkt = 0 and the hole effective masses, according to

VHH = 2

[
2m0

h̄2 (γ1− 2γ3)|ẼHH|
]1/2

(8)

VLH = 2

[
2m0

h̄2 (γ1 + 2γ3)|ẼLH |
]1/2

(9)

VSO= 2

(
2m0

h̄2 γ1|ẼSO−1|
)1/2

. (10)

The LH–SO band coupling was in this instance neglected, as the EPM calculation indicated
that this was rather weak. The interface effective potential is thus a diagonal matrix which, in
the case of TSLs withl = m, for instance, has the Dirac comb form:

V (z) = h̄2

2m0
Vδ

+∞∑
i=−∞

δ(z− id) (11)

with d denoting a half of the superlattice period, andVδ is given by

Vδ = diag(VHH, VLH, VLH, VHH, VSO, VSO). (12)

As we find by calculation, the EPM results are reproduced reasonably well not only for a single
twinning boundary, but for TSLs too [3]. Therefore we believe that this form of effective
interface potential, different for HH, LH, and SO branches, is not very unusual—recall that

Table 1. Material parameters of GaAs, Ge, and Si, and for a single twinning interface, determined
by experiment (E), and extracted from the empirical pseudopotential theory (T ) [2,3]. The Luttinger
parameters (γ1, γ2, andγ3), indices of refractionn, spin–orbit splitting energies1, lattice constants
a, and the strengths of interfaceδ-potentials for different bulk states (VHH, VLH, VSO), as computed
from energies of bound/resonant states in a single twinning boundary (ẼHH, ẼLH, ẼSO) and values
of theγ -parameters either experimental or implicit in the EPM, are all given.

Parameter GaAs,E GaAs,T Ge,E Ge,T Si, E Si, T

γ1 6.85 5.57 13.35 7.40 4.22 6.10
γ2 2.10 1.78 4.25 2.30 0.39 1.10
γ3 2.90 2.28 5.69 3.10 1.44 2.20

ẼHH (meV) — −19 — −25.8 — −45.6

ẼLH (meV) — −0.3 — −0.5 — −3.5

ẼSO−1 (meV) — −0.65 — — — —
VHH (nm−1) −1.45 −1.42 −2.31 −1.80 −2.53 −2.85
VLH (nm−1) −0.608 −0.546 −1.08 −0.806 −1.41 −1.96
VSO (nm−1) −0.648 −0.617 0 0 0 0
n 3.6 — 4.0 — 3.43 —
1 (meV) 340 333 282 278 44 43
a (nm) 0.565325 — 0.56579 — 0.543095 —
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e.g.0- and X-valley electrons experience quite different macroscopic potentials at GaAs/AlAs
interfaces while the microscopic potential is clearly unique. Generally, the interface potential
may be a full matrix, i.e. not necessarily diagonal, provided that it remains Hermitian. It should
be filled in with matrix elements of theeffective, that is state-dependent, potential, because
it acts only upon the envelope wave functions and not upon the microscopic wave functions.
This implies that all the matrix elements may also depend onkt . However, to keep the model as
simple as possible we attempted to use the diagonal-matrix form of the potential, the elements
of which depend on the type of holes but not onkt . The validity of this approximation had to
be checked by comparing against the EPM results, and we found that it does indeed provide
reasonable accuracy.

The calculation of the miniband structure starts with diagonalization of the Hamiltonian
(1) in order to obtain the dispersionkz(E). The Hamiltonian is not invariant under the in-plane
π -radian rotation; thus in each layer a set of sixkz-values is to be determined (there is no±kz-
degeneracy for the [111] direction). Degenerate eigenvectors corresponding to the samekz are
alternately arranged as the subsequent columns of the matricesX andY , and the procedure is
repeated for allkz. In order to increase the stability of the procedure, the first row inX and the
second row inY are set equal to 0, as in [15]. The eigenproblem for the superlattice is then
solved by matching the wave functions (written as linear combinations of bulk states) and the
probability current density across the interface, and imposing the Bloch conditions. It turns
out that the complexity of the original problem of finding the zero of the 24× 24 determinant
may be reduced twice if the original secular matrix is conveniently partitioned, as

S =
[

P − R Q

(P +R)E2↑(+d) ei2qdQE2↑(−d)
]

(13)

where

P =
[

X↑ Y↑
DeffX↑ +X↑G2↑(0) DeffY↑ + Y↑G2↑(0)

]
(14)

R =
[

0 0
DδX↑ DδY↑

]
(15)

and

Q =
[ −X↓ −Y↓
−X↓G2↓(0) −Y↓G2↓(0)

]
(16)

whereq denotes the superlattice wave vector.
We seek a solution of the systemSc = 0 wherec = [c↑, c↓]T are the coefficients of

expansion of the envelope functions in thekz-modes. The matricesDeff andDδ are given in
appendix A, whileE2↑(z) andE2↓(z) are given by

E2↑(z) =
[
E↑(z) 0

0 E↑(z)

]
E2↓(z) =

[
E↓(z) 0

0 E↓(z)

]
(17)

respectively, whereE↑(z) and E↓(z) are diagonal matrices made up of the plane-wave
functions:

E↑ij (z) = eikz↑i zδij E↓ij (z) = eikz↓i zδij . (18)

Hereδij denotes the Kronecker delta symbol. Similarly,

G2↑(z) =
[
G↑(z) 0

0 G↑(z)

]
G2↓(z) =

[
G↓(z) 0

0 G↓(z)

]
(19)

whereG↓(z) andG↓(z) denote diagonal matrices:

G↑ij (z) = ikz↑ieikz↑i zδij G↓ij (z) = ikz↓ieikz↓i zδij (20)
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respectively. We follow the prescription of [16], suggesting the application of subblock
pivoting to equation (13), and reducing the problem to a Hermitian one. In addition to
leading to a more tractable model, this method shows its superiority to the non-reduced
scheme. More specifically, the main drawback of equation (13) is the existence of spurious
solutions [17], created by hole wave vectors beyond the Brillouin zone. Their adverse effects
are readily removed by making suitable linear combinations of the matrix elements. If the
exponential functions in equation (13) are replaced by tangents, inherently stable solutions
may be guaranteed provided that the reshuffling ofS, equation (13), is properly done [16]:

S̃ =
[
PCq + iRSq QCk
−iPSq − RCq iQSk

]
(21)

whereCq , Sq , Ck, andSk are given by

Cq = e−iqdE2↑(+d/2) + e+iqdE2↑(−d/2)
2

(22)

Sq = e−iqdE2↑(+d/2)− e+iqdE2↑(−d/2)
2i

(23)

Ck = E2↓(+d/2) +E2↓(−d/2)
2

(24)

Sk = E2↓(+d/2)− E2↓(−d/2)
2i

(25)

respectively. Furthermore, we define

Tk = CkS−1
k Tq = CqS−1

q . (26)

As they are generally non-singular, either subblock in the second column of equation (21) may
be used as the pivot. IfS12 is employed for that purpose, the characteristic equation reads

Sccc =
[

I + iRTqP−1 QCk
iQTkQ−1−QTkQ−1RTqP

−1 + iPTqP−1 +RP−1 0

] [
cc↑
cc↓

]
= [0] (27)

whereSc denotes the 2× 2-subblock matrix,cc = [cc↑, cc↓]T are the coefficients of the trans-
formed basis states, and [0] is the 24×1 zero matrix. TheS12-subblock, however, may become
a singular matrix at some energy; hence the electronic structure found from equation (27) may
lack some eigenvalues. The latter are efficiently regained from the characteristic equation
obtained with theS22-subblock as a pivot:

Sscs =
[−QT −1

k Q−1 + iQT −1
k Q−1RT −1

q P−1− PTqP−1− iRP−1 0
−iI − RT −1

q P−1 iQSk

] [
cs↑
cs↓

]
= [0]

(28)

whereSs and cs are matrices consisting of 2× 2 and 2× 1 subblocks, respectively. It is
clear from equations (27) and (28) that onlySc21 andSs11 are to be considered for eigenvalue
determination. When the solution is obtained, the corresponding system of equations is solved
in order to find thecc,s↑-coefficients, whereascc,s↓-coefficients are found from the remaining
row in the secular equation, i.e. the first row inSc and the second row inSs. In order to
express the eigenfunctions in terms of bulk plane waves, backward transformations should be
carried out:

c = B̃−1A−1
c cc (29)

or

c = B̃−1A−1
s cs (30)
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where

Ac =
[
PCq 0

0 I

]
As =

[
PSq 0

0 I

]
(31)

and

B̃ =
[
E2↑(+d/2)eiqd 0

0 E2↓(−d/2)
]
. (32)

Multiplying c by the bulk eigenvectorsX andY , the envelope functions may be expressed as

F↑(z) = W↑E1↑(z) F↓(z) = W↓E1↓(z) (33)

in the ↑ and↓ layer, respectively, whereE1↑ andE1↓ denote one-dimensional arrays of
exponentials inE↑ andE↓, i.e.

E1↑i = eikz↑i z E1↓i = eikz↓i z (34)

and matricesW↑ andW↓ are composed according to

W↑ij = (c↑jX↑ij + c↑(j+6)Y↑ij ) (35)

W↓ij = (c↓jX↓ij + c↓(j+6)Y↓ij ) (36)

respectively.

3. Intersubband absorption

The simplest way to derive the transition matrix element connecting two states is to find
the gradient of the starting Hamiltonian, equation (1), ink-space [18, 19], even though an
alternative procedure has been proposed [20]. The interaction Hamiltonian thus obtained
(scaled by the product of the electron charge and magnetic vector potential) may be conveniently
separated into an overlap matrix and a dipole matrix. For each polarization of the plane-
polarized light, there is a particular combination of the envelope functionsF(z)which provides
an absorption coefficient in excess of the free-hole absorption coefficient. Matrix elements of
the interaction Hamiltonian (divided by ¯h/2m0) are given in table B1 in appendix B. Using these
and the expression for the envelope functions, equations (33), the transition matrix elements
connecting the initial (i) and the final (f ) state for light polarized alongm = x, y, z reads

M
(m)
f i =

∫ 0

−d
E

†
1↓f (z)W

†
↓fH

↓(m)
int W↓iE1↓i (z) dz +

∫ +d

0
E

†
1↑f (z)W

†
↑fH

↑(m)
int W↑iE1↑i (z) dz

+
∫ d

−d
E

†
1f (z)W

†
f

kz(I)
2

WiE1i (z) dz

=
6∑
l=1

6∑
j=1

[
M
↑
Wlj

ei(kz↑j−k∗z↑l )d − 1

i(kz↑j − k∗z↑l)
+M↓Wlj

1− e−i(kz↓j−k∗z↓l )d

i(kz↓j − k∗z↓l)

]
+MIW (37)

whereHint indicates the interaction Hamiltonian without interface elements, andkz(I)/2
denotes the remaining interface part, whereI is given in table B1.M↑W andM↓W indicate
the products of the three middle terms in the first and the second integral in this expression,
respectively, andMIW the interface matrix element.

For the absorption coefficient, a rather general formula is used [21]:

α(h̄ω) = C̃

�

∑
i

∑
f

∣∣∣∣ h̄2m0
Mfi

∣∣∣∣2 0/2π

(Ef − Ei − h̄ω)2 + 02/4
(fFD(Ei)− fFD(Ef )). (38)
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HerefFD denotes the Fermi–Dirac distribution function for holes. The constantC̃ is given by

C̃ = πe2

ncε0ω

wheree denotes the electron charge,n the index of refraction,c the speed of light,ε0 the
vacuum permittivity, and ¯hω the photon energy. In equation (38)� denotes the volume of
the structure (superlattice unit cell) and0 the full width of the line-broadening Lorentzian.
Applying cyclic boundary conditions we finally get

α(h̄ω) = e2h̄

8π2cε0

1

nh̄ω

∫ +∞

−∞
dkx

∫ +∞

−∞
dky

∫ +π/2d

−π/2d
dq
∑
i

∑
f

∣∣∣∣ h̄2m0
Mfi

∣∣∣∣2
× 0/2π

(Ef − Ei − h̄ω)2 + 02/4
(fFD(Ei)− fFD(Ef )). (39)

Here,|Mfi |2 is obtained by summing over the four possible transitions offered by the double
degeneracy of the initial (i) and the final (f ) state.

4. Results and discussion

The theory described in the previous sections is applied to GaAs-, Ge-, and Si-based TSLs.
We consider a symmetric (l = m) TSL, with the half-period ofm = 9 monolayers, which
for GaAs amounts tod = 2.9 nm. We assume homogeneous doping ofNA = 1017 cm−3

acceptors throughout the structure (as in [3]). The absorption coefficient is calculated at
T = 77 K. For the homogeneous relaxation time we assume 0.1 ps, which corresponds to the
Lorentzian width of0 = 13.16 meV. The Luttinger parameters [22,23], the eigenenergies of
the STBs, the strengths of the delta potentials, and other relevant parameters [22] for the three
semiconductors are shown in table 1. The eigenenergies do not depend on the sign ofkx , ky ,
or q, but the eigenfunctions are neither invariant nor simply transformed under the inversion
symmetry. The region of important states for optical transitions is taken to be bounded by
perpendicular planes intersecting at(kx, ky, q) = (±0.5, ±0.5, ±π/2d) (in units of nm−1),
and is subdivided into 13× 13× 17 cubes. These 2873 points provide a sufficiently dense
mesh for the calculation of the absorption coefficient, and include all states of relevance. This
is due to the rather low values of the Fermi level (table 2), implying that just a fraction of
the whole 2D Brillouin zone is populated. One may argue against low doping levels, but we
select the same value as in [3] for the purpose of comparison between the EMT and EPM [3]
calculation. In addition, the self-consistency effects are neglected in the present calculations.

Table 2. Zone-centre energies of the four lowest minibands and Fermi levels (with the energy axis
pointing downwards) corresponding to a hole density of 1017 cm−3 atT = 77 K, calculated from
the EPM (T ) and the multiband EMT with the experimental values of theγ -parameters (E), and
those extracted from pseudopotential theory (P).

Level GaAs,T GaAs,E GaAs,P Ge,T Ge,E Ge,P Si, T Si, E Si,P

E1 (meV) −27 −27.1 −26.8 −35 −40.8 −35.0 −61 −56.1 −59.6
E2 (meV) −7 −8.19 −7.35 −10 −14.6 −10.9 −30 −27.4 −29.6
E3 (meV) −6 −0.681 −1.73 −7 14.0 −6.76 −13 −21.2 −18.6
E4 (meV) 39 45.8 44.0 52 85.7 52.2 35 44.0 44.0
EF (meV) — −41.1 −41.7 — −46.8 −47.2 — −70.3 −70.1

The electronic structure is calculated with commonly used (experimental) Luttinger
parameters, and those derived by fitting pseudopotential dispersion curves to the effective-
mass dispersions (i.e. implicit in EPM calculations) [3], the latter being useful mainly for
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comparison of EPM and EMT results. Generally, we found very good agreement between the
three calculations, which may be noticed from table 2, where the energies of the four lowest
minibands in the centre of the 2D Brillouin zone are shown. It may be noticed that the errors
introduced by the EMT are lowest for two ground minibands of heavy and light holes, as is
indeed expected [24]. Small values of these errors justify the use of the interfaceδ-potential
in the matrix form, equation (8). As an example, the HH ground-state energy in GaAs is fairly
well estimated by the EMT. The discrepancy between the EMT and EPM becomes negligible
if the Luttinger parameters are extracted from the EPM itself, which does not seem surprising,
since the fit to the dispersion relation of the EMT works best for the lowest-energy states [24].
Excellent agreement between the EPM and EMT was found for Ge, whereas treatment of Si by
EMT produces a larger error, which may be accounted for by the more complex band structure
found in this semiconductor.

For the second miniband, the accuracy of EMT is generally lower than for the first
miniband, but EMT results still depart by just a few meV from the EPM ones. For the third
and the fourth level the discrepancy is much larger; therefore one may question the validity
of the effective-mass theory. This finding matches the general conclusion reached in [24]
for GaAs/AlAs superlattices. A large deviation may be explained as due to either a limited
basis of bulk states or too simple a model for the effective interface potential. It is difficult
to estimate the relative importance of the two approximations. Nonetheless, we consider the
deviations of the zone-centre energies of the order of a few meV acceptable, keeping in mind
that the EPM in its different implementations (interface matching or supercell) does not really
offer accuracy much better than that. Furthermore, zero energy gaps atkt = 0, as well as the
miniband folding effect found from the EPM, are also yielded by EMT calculation, as clearly
depicted in figure 2.

Superlattice eigenstates are classified according to the bulk states that they are composed
of. These are denoted in figure 2 as heavy hole (HH) and light hole (LH), the latter being
shorthand notation for the mixture of light-hole and split-off bands (LH + SO). The second
miniband composed of LH + SO states clearly has a smaller effective mass than the ground
miniband, thus having a large width. Furthermore, since HH and LH states do not mix at
kt = 0, LH1 and LH2 states cross HH minibands, at four points in this example, while the
narrower LH3 and LH4 minibands do that just twice, as displayed in figure 2. As expected, HH
minibands do not cross; they are well separated, and their widths increase with the miniband
index. In contrast, LH4 and LH5 states exhibit clear anticrossing behaviour near1 = 340 meV.
All crossings atkt = 0 are converted to anticrossings, and also the zero energy gaps disappear
at finitekt in all three semiconductors. As an example, such behaviour in GaAs atq = 0 is
displayed in figure 3. There exists a prominent anticrossing between the first and the second
miniband, and a much smaller effect of this kind occurs between the ninth and tenth miniband,
while it seems that the remaining ones do not exchange their effective masses anywhere in the
kt-plane. One should note the existence of almost dispersionless fifth and sixth minibands,
both of them being heavy hole in character. Even though the underlying crystal structure
does not exhibit cylindrical symmetry in thekt-plane, the minibands do have nearly isotropic
in-plane dispersion. Consequently, use of the axial approximation might seem justified, but
the intersubband absorption would be almost zero if theγ2- andγ3-parameters were taken as
equal, which is done in the axial approximation [11], as is further discussed below.

In order to explain the absorption spectra, we present in figure 4 the eigenfunctions at the
centre of the superlattice Brillouin zone. The type of the state is indicated in the figure by the
displayed non-zero component of the envelope function vector, the other ones being exactly
zero atkt = 0. Only one member of a doubly degenerate set of envelope functions is shown in
figure 4, but it provides sufficient information on the role of symmetry in optical transitions.
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Figure 2. The miniband dispersion in the direction of the superlattice wave vector, atkt = 0, in
the GaAs9GaAs′9 twinning superlattice. There are six heavy-hole minibands in the energy range
shown in the figure. Due to its low effective mass, the light-hole ground miniband (LH1) is wide
enough to cross four HH minibands.

Figure 3. In-plane miniband dispersion in a GaAs9GaAs′9 twinning superlattice, atq = 0.
Anticrossings between HH1 and LH1, and HH6 and LH4 minibands may be noticed.

States are classified asnormal (with the wave-function periodicity equal to the superlattice
half-period) andfolded(with the periodicity of the superlattice full period), and their type is
indicated in parentheses in figure 4, wheren denotes a normal andf a folded state.
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Figure 4. Wave functions at the Brillouin zone centrekt = 0, q = 0. Only one member of the
doubly degenerate set in the GaAs9GaAs′9 twinning superlattice is shown. The HH1→ LH2
transition is enabled by inversion of the dipole part of the matrix elementC of the interaction
Hamiltonian—opposite to what takes place in composite superlattices. In other words, the transition
matrix element in this case is doubled, instead of vanishing.
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Let us now consider the polarization dependence of the matrix elements and the absorption
coefficient. Forx-polarization andkt = 0, coupling between minibands of different type and
parity is enabled by dipole matrix elementsB andC of the interaction Hamiltonian (table B1).
However, of the two, onlyC is responsible for the dominant peak of the absorption coefficient.
In other words, only the dipole part ofC varies from one layer to the other, and the coupling
is enabled between HH1 and LH2 minibands. In addition, a finite coupling arises from the
change of the Luttinger parameters at two interfaces belonging to a superlattice period. The
matrix element is more than halved in this way in GaAs in the centre of the 2D Brillouin
zone; therefore this TSL exhibits relatively low absorption in the infrared part of the spectrum.
The absorption of thez-polarized light is provided by the diagonal-matrix elements of the
interaction Hamiltonian. Here the transitions occur between states of opposite parity but
the same type(HH → HH), since the dipole parts of the diagonal-matrix elements extend
unchanged throughout thekt-plane; therefore they act as the most effective terms. Because
of that, the dominant transitions in GaAs are HH1→ HH5 and HH2→ HH3 transitions.
Photon energies corresponding to these transitions are given in table 3(a). Inter-heavy-hole
matrix elements are proportional to0z = γ1− 2γ3, which does not vary in the structure at all;

Table 3. Largest (inf ) transition matrix elements|Mfi |2 for the three lowest minibands in
(a) GaAs, (b) Ge, and (c) Si TSLs, at(kx, ky, q) = (0, 0, 0). Whether the transition is noticed in
the absorption spectrum as a distinctive absorption line (‘A. line’) is indicated in the fourth column.
For z-polarized light only the energies of the absorption lines (transition energies1E) are given.
Types of state involved in the transitions (n or f ) are indicated. All four combinations are allowed
in TSLs, while coupling betweenn- andf -states is disabled in classical superlattices.

(a)
x-polarization z-polarization

|Mfi |2 1E 1E

Transition (nm−2) (meV) A. line Transition (meV)

HH1(n)→ LH2(f ) 0.532 244 yes HH2(f )→ HH3(f ) 46
LH1(n)→ HH2(f ) 0.971 9 yes HH1(n)→ HH5(n) 210
HH2(f )→ LH5(n) 9.51 385 no
HH2(f )→ LH3(f ) 11.9 235 no

(b)
x-polarization z-polarization

|Mfi |2 1E 1E

Transition (nm−2) (meV) A. line Transition (meV)

HH1(n)→ LH2(f ) 2.04 289 yes HH1(n)→ HH5(n) 384
LH1(n)→ HH2(f ) 2.86 29 yes
HH2(f )→ LH3(f ) 8.09 247 no

(c)
x-polarization z-polarization

|Mfi |2 1E 1E

Transition (nm−2) (meV) A. line Transition (meV)

HH1(n)→ LH3(f ) 0.143 131 yes HH2(f )→ HH3(f ) 90
HH2(f )→ LH2(n) 5.05 71 yes HH1(n)→ HH5(n) 309
HH2(f )→ LH4(f ) 0.0655 119 no
HH2(f )→ LH5(n) 11.3 296 yes
LH1(n)→ HH5(n) 0.0173 232 no
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that is, there are no interface terms in the transition matrix element. This combination of the
Luttinger parameters amounts to 1.05 in GaAs. The momentum matrix element connecting
heavy and light holes is now proportional to0x = 2

√
2/3(γ2 − γ3), which amounts to 1.14

in GaAs. This may lead one to conclude that the absorption coefficient attains about the same
value for bothx-polarized andz-polarized light. However, this is not so, because of the finite
contribution of the interface terms in the case ofx-polarization, as mentioned above. The
resulting effect is about 2.5-times-lower absorption ofx-polarized light than ofz-polarized
light. Even though the absorption peak forx-polarized light arises from the transition between
the normal and the folded state, the matrix element associated with it may not be the largest one,
as illustrated in table 3(a), where the largest (inf ) squares of zone-centre matrix element moduli
|Mfi |2 for the three lowest initial minibands (i.e.i = 1, 2, 3) are given. Those responsible for
the absorption lines in figure 5(a) are noted in the table. The matrix element connecting the

Figure 5. The absorption coefficients for (a) a GaAs twinning superlattice, (b) a fictitious GaAs
δ-superlattice discussed in the text, (c) a Ge twinning superlattice, and (d) a Si twinning superlattice,
for x-polarized light (solid lines) and forz-polarized light (dashed lines). The higher absorption
of z-polarized light is due to the values of particular combinations of the Luttinger parameters that
appear in the coupling terms.
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HH2 and LH3 states, both of which are folded, is the strongest for the energy range chosen
here. Nonetheless, it does not make a distinctive feature in the absorption spectrum, and is
actually merged with the HH1→ LH2 transition. However, this folded-to-folded transition
may dominate the spectrum for superlattices with wider layers, where HH2 would drop below
LH1, and the absorption enhancement may occur due to both the increased population of
the initial state and the increased matrix element. Due to the more rapidly varying envelope
functions, the absorption coefficient should rise in thinner superlattices as well. However, use
of the effective-mass theory can hardly be justified in this case, as is also noted by Wood and
Zunger for the GaAs/AlAs system [24]. The issue of the dependence of the absorption on
the layer thickness needs more thorough investigation. Finally, we should note that the wave
functions and matrix elements all change withkt , but it turns out that states with rather small
kt give the major contribution to the absorption, which implies that the properties of matrix
elements as discussed above are directly reflected in the absorption profile.

In order to demonstrate the influence of the crystal rotation alone on the absorption
spectrum, the absorption coefficient is also calculated for a hypothetical GaAsδ-superlattice,
comprising layers of the same orientation, but with theδ-potential given by equation (11).
The absorption ofz-polarized light here occurs in transitions between the same states and has
nearly the same magnitude as in twinning superlattices, as displayed in figures 5(a) and 5(b). In
contrast, the absorption ofx-polarized light is enabled by HH2→ LH3 transitions, where both
states are folded. Hence the crystal rotation affects coupling between normal and folded states.

The influence of the band structure on the absorption in Ge and Si is illustrated in
figure 5(c) and figure 5(d), respectively. Two absorption lines occurring upon HH1→ LH2
and LH1→ HH2 normal-to-folded transitions in Ge dominate the spectrum forx-polarized
light. In spite of the larger matrix element for LH1→ HH2 transition and due to the population
of the relevant states, the HH1→ LH2 absorption line is the strongest one. The HH2→ LH3
transition, offering an almost four-times-larger matrix element (table 3(b)), is not noticed in
the spectrum, but for wider layers, the absorption on this transition may be dominant, as
discussed above for the GaAs TSL. Both the initial and final state are folded here, and the
eventual absorption line is enabled by the matrix elementB of the interaction Hamiltonian.
As previously mentioned,VSO equals 0 for Ge and Si. This choice of the effective potential
energy for SO holes implies that the SO band top should be reproduced as the eigenstate
for (kx, ky, q) = (0, 0, 0), with a constant envelope function in the superlattice. Nevertheless,
one-to-one correspondence between envelope functions in two superlattices may be established
for states higher than LH2 (E = 44 meV). For example, the shape of the components of the
envelope function vector of the LH3 state in Si is the same as for the LH2 state in GaAs.
Therefore the absorption line is due to HH1→ LH3 transition, but two additional lines
appear in the spectrum (figure 5(d)), corresponding to folded-to-normal transitions. As for
the comparison with Ge and GaAs, along with data for HH1→ LH3, HH2 → LH2, and
HH2→ LH5 transitions, the values of the matrix elements of HH2→ LH4 and LH1→ HH5
transitions are given in table 3(c), but these are of no importance for the absorption due to the
very low matrix elements. The combinations of Luttinger parameters enabling the absorption
peak for two polarizations are larger for Ge and Si than for GaAs. For example,0z = 1.97
and0x = 2.35 for Ge, which implies four-times-stronger absorption in Ge than in GaAs. The
ratio is even larger forx-polarized light, due to lower interface terms in the transition matrix
element. Forz-polarized light, the absorption is shifted to shorter wavelengths in Ge9Ge′9
TSLs, and is predominantly due to the HH1→ HH5 transition, whose energy is shown in
table 3(b). In Si, the increase due to the bulk band structure (0x = 1.71 and0z = 1.34) is
obscured by larger interface terms. Like for GaAs, these reduce the absorption coefficient of
Si (for x-polarization so strongly that no peak exceeds 100 cm−1). Forz-polarized light, two
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much higher peaks of the absorption coefficient, attributed to HH1→ HH5 and HH2→ HH3
transitions, are found for Si (table 3(c)).

In order to demonstrate the usefulness and limitations of the EMT, the absorption spectrum
for the Ge6Ge′6 superlattice is also computed. One may doubt the validity of the EMT for layers
as thin as this, but the EPM-based results were given in reference [3] for this case, and also
for the Si-based TSL. Of the two, the Ge TSL shows better agreement between EMT- and
EPM-calculated energies, as illustrated by table 2. The value0 = 10 meV was chosen in the
EPM calculation [3], and the same was used in this calculation, in order to provide a better
assessment of the EMT results, and for the same reason EPM-calculated Luttinger parameters
were used. The single peak of the absorption spectrum of thex-polarized light displayed in
figure 6 is located at 52 meV and amounts to 1480 cm−1, which compares favourably with the
EPM-calculated values 58 meV and 1080 cm−1 (cf. figure 4(b) in reference [3]). The rather
small deviations are due to the simplicity of the EMT. As for the longer-period Ge9Ge′9 super-
lattice, this peak originates from the LH1→ HH2 transition. Furthermore, the absorption
spectrum calculated from the EPM for thez-polarized light has a peak at about the same
energy as for thex-polarized light, and the peak value is about 400 cm−1. According to EMT,
however, the absorption coefficient does not exceed 1 cm−1 in the energy range 10–300 meV.
More thorough inspection of EMT results shows that|M(z)

f i |2 for the dominant HH2→ HH3

transition is in fact more than 15 times larger than|M(x)
f i |2 for the LH1→ HH2 transition.

This would give rise to a peak at about 82 meV, but it does not appear due to population
effects. This indicates that the EMT-derived selection rules may be too strict, not predicting
a transition found by microscopic EPM calculation, which is due to the relative simplicity of
the former. Yet, the successful prediction of the main absorption feature in this case confirms
the usefulness of the EMT.

Figure 6. The absorption coefficient in the Ge6Ge′6 superlattice calculated forx-polarized light.
Due to the strict selection rules, the peak of thez-polarized light found from the EPM is not
reproduced by EMT, yet the displayed absorption peak compares favourably with the EPM result
(reference [3]) in respect of both the location and the magnitude.

Finally we would like to point out that the consideration of the dependence of the absorption
on the light polarization and material parameters is, to the best of our knowledge, novel and
enabled by the relatively simple structure of the effective-mass Hamiltonian. Even though
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results obtained from the EPM may be more reliable, they do not offer a straightforward account
of the relationship between the superlattice electronic structure and the absorption spectrum.

5. Conclusions

Electronic structures of GaAs, Ge, and Si p-doped twinning superlattices are calculated
using multiband effective-mass theory. A rather complex potential at the interface between
two layers is approximated by aδ-potential allowed to vary in the set of eigenstates of the
angular momentum, thus forming a diagonal-matrix potential, whose elements are found by
fitting to the energy levels of a single twinning boundary as calculated using the empirical
pseudopotential method. Good agreement with the pseudopotential calculation is achieved, in
respect of both the eigenenergies in the zone centre and the miniband dispersion. In addition
to the electronic structure, we calculated the intersubband absorption in these systems. As
regards the polarization dependence of the absorption, our results support the findings of the
pseudopotential theory [3], with deviations which are ascribed to the simplicity of the EMT.
Miniband states between which the transitions occur, as well as the matrix elements of the
interaction Hamiltonian responsible for the absorption, are indicated. The absorption peaks
are explained by the structural parameters and the symmetries of the states taking part in the
transitions. The strongest absorption is found in Ge, a lower value is calculated for Si, while a
very small value, due to low in-plane anisotropy, is found for GaAs. The peculiar property of
the twinning superlattice is the existence of coupling betweennormalheavy-hole andfolded
light-hole states. These transitions do not normally occur in composite microstructures, but
are enabled by the crystal rotation in the twinning superlattice. Moreover, they give rise to the
largest absorption peaks in all three semiconductors.

Appendix A. Boundary conditions

The boundary condition for the probability current density is obtained by integrating the system
of differential equations represented by the Hamiltonian, equation (1), across the interface. In
the considerations presented in this paper there appear two matrices of the same structure as
the matrix in equation (1) (with1→ 0), i.e.

Deff = D−1
2↓ (D1↑ −D1↓) (A.1)

Dδ = D−1
2↓ Vδ (A.2)

whereD1↑,D1↓, andD2↓ are given in table A1.

Table A1. Matrices for the boundary condition, derived from the conservation of the probability
current density. These matrices are composed analogously to the hole Hamiltonian; hence the same
labels are used here as in equation (1).

Layer Ph Qh A+ A− B C

D1↑ 0 0 0 0 − i√
3
(2γ2 + γ3)k− i

√
2
3(γ2 − γ3)k+

D1↓ 0 0 0 0 i√
3
(2γ2 + γ3)k− −i

√
2
3(γ2 − γ3)k+

D2↓ γ1 −2γ3 γ1 − 2γ3 γ1 + 2γ3 0 0
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Appendix B. The interaction Hamiltonian

The interaction Hamiltonian is obtained by finding a gradient of each element of the hole
Hamiltonian, equation (1), ink-space. Obviously, the Hamiltonian structure (with1 → 0)
is preserved, with only the matrix elements changed. These are displayed in table B1. The
matrix elements appearing in these considerations are given by

51 = 2γ1kz 52 = −4γ3kz 55 = 2(2γ2 + γ3)kz

57 = 2(γ1− 2γ3)kz 58 = 2(γ1 + 2γ3)kz 59 = 2(γ2 − γ3)kz

01 = 2γ1 02 = 2γ3 03 = 2(γ1 + γ3) 04 = 2(γ1− γ3)

05 = 2(2γ2 + γ3) 06 = 2(γ2 + 2γ3) 09 = 2(γ2 − γ3).

(B.1)

Table B1. The matrix elements of the interaction Hamiltonian. Atkt = 0, the intersubband
transitions forx-polarization are enabled by overlap terms, while forz-polarization the dipole
interaction is the only one existing. The upper sign in the interface matrixI is for the↑ layer, while
the lower sign corresponds to the↓ layer.

Layer Polarization Ph Qh A+ A− B C

↑ x 01kx 02kx 03kx 04kx

√
2
309k+ − 1√

3
55 − 1√

3
06k− +

√
2
359

↑ y 01ky 02ky 03ky 04ky −i
√

2
309k+ + i√

3
55

i√
3
06k− + i

√
2
359

↑ z 51 52 57 58 − 1√
3
05k−

√
2
309k+

↓ x 01kx 02kx 03kx 04kx −
√

2
309k+ − 1√

3
55 − 1√

3
06k− −

√
2
359

↓ y 01ky 02ky 03ky 04ky i
√

2
309k+ + i√

3
55

i√
3
06k− − i

√
2
359

↓ z 51 52 57 58 − 1√
3
05k− −

√
2
309k+

I x 0 0 0 0 0 ±
√

2
309

I y 0 0 0 0 0 ±i
√

2
309

I z 0 0 0 0 0 0
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